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We present calculations of optimal linear growth in the Batchelor (or q) vortex.
The level of transient growth is used to quantify the effect of the viscous centre
modes found at large Reynolds number and large swirl. The viscous modes compete
with inviscid-type transients, which are seen to provide faster growth at short times.
Following a smooth transition, the viscous modes emerge as dominant in a different
regime at later times. A comparison is drawn with two-dimensional shear flows, such
as boundary layers, in which weak instability modes (Tollmien–Schlichting waves)
also compete with inviscid transients (streamwise streaks). We find the competition
to be more evenly balanced in the Batchelor vortex, because the inviscid transients
are damped faster in a swirling jet than a two-dimensional shear flow, so that despite
their weak growth rates the viscous modes may be relevant in some situations.

1. Introduction
High-Reynolds-number vortices have been a focus of hydrodynamic stability theory

ever since the work of Rayleigh. Isolated vortices are experimentally observed to be
unstable in many configurations (Leibovich 1978), but the mathematical description
of vortex breakdown is still far from complete. Applications for vortex stability theory
range from tornadoes to swirling pipe flow and even fully developed turbulence, but
in this paper we concentrate on the vortex derived by Batchelor (1964) to model
a trailing line vortex. The stability of the trailing line vortex is of importance in
aeronautics as the vortex poses a hazard on runways.

Our mean flow, the Batchelor vortex, is described by a single parameter q which
measures the swirl strength. There is a large literature documenting the stability of
this flow for different values of q and Reynolds number Re. Values of q � 2 are of the
most practical interest (Leibovich 1978), but for these values the observed instability
of the vortex is not yet fully understood. The documented instabilities fall into three
broad categories.

(a) Exponential instability modes of an inviscid nature (meaning that the
exponential growth rate increases to a finite value as Re → ∞). These were the
first instabilities to be found (Lessen, Singh & Paillet 1974) and are known to be
present for swirl strength 0 <q < 2.31 (Stewartson & Brown 1985; Heaton 2007). At
their strongest, the inviscid modes are very unstable, but since they are restricted
to q < 2.31, and indeed they are very weak for q > 1.6 (Heaton 2007), they cannot
explain instability when q � 2.

(b) Exponential instability modes of a viscous nature (meaning that the exponential
growth rate decreases to zero as Re → ∞). This type of instability was first discovered
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for rotating pipe flow by Stewartson, Ng & Brown (1988) and was computed in
the Batchelor vortex by Khorrami (1991) and Fabre & Jacquin (2004). Khorrami’s
modes are very weak and restricted to 0 <q < 1.3, so are not relevant here. Fabre &
Jacquin’s modes are stronger and can exist for all values of q (Le Dizès & Fabre
2007), so they are a candidate instability mechanism when q � 2. These modes are still
relatively weak however, with typical growth rates of 10−2 or less, so the magnitude
of their contribution is unclear.

(c) Algebraic inviscid instability. This is a weaker instability first found by Heaton &
Peake (2006) which can affect vortices when Re = ∞. When Re < ∞, the algebraic
growth is asymptotically damped but translates into transient growth, in the same
way that the inviscid lift-up effect translates into transient growth in viscous shear
flow (Schmid & Henningson 2001). If sufficiently strong, these transients might offer
a ‘bypass’ route to vortex instability. The mechanism for this inviscid-type transient
growth was presented by Heaton & Peake (2007), who found a precise analogy with
the well-known transient growth in plane shear flows, both being vestiges of the
inviscid continuous spectrum (CS). This effect is present for all values of q .

In this paper, we use optimal growth (see Schmid 2007) to quantify the competition
between mechanisms (b) and (c) when q � 2. Optimal growth is especially suited to
flows which are asymptotically stable (in the limit t → ∞) or only weakly unstable,
and so it is a natural tool for the present problem. The usual procedure of finding
the maximum possible growth of disturbances over a specified time interval gives an
impartial measure of the scope for instability, and will reveal which mechanisms are
used.

Heaton & Peake (2007) described inviscid-type transient growth in general vortices
and identified an analogy to the transient growth of streamwise streaks in plane shear
flows, as both are derived from algebraic CS instabilities present only when Re = ∞.
They computed these transients for the Batchelor vortex, restricted to parameter
values for which viscous modes are absent, and found that the growth mechanism (c)
alone can be a strong effect. As Le Dizès & Fabre (2007) note, viscous modes have
some resemblance to the Tollmien–Schlichting waves of a Blasius boundary layer
in their mathematical structure (large-Re WKB) and also in the strength of their
growth rates. In this paper, we will consider parameters for which effects (b) and (c)
are simultaneously present. We will discuss the competition between (b) and (c) and
connect two different regimes, one dominated by inviscid transients over short time
intervals and a second dominated by viscous modes over long time intervals. The
nature of the transition between the two regimes shows that the viscous modes are
more likely to be important than the Tollmien–Schlichting waves in a boundary layer,
but that the inviscid effects are still likely to be the most important ingredient.

The remainder of this paper is organized as follows. In § 2, we present the governing
linearized equations and the numerical method used to calculate optimal gain. In §§ 3
and § 4, we present the main results, and in § 5, we discuss the implications of our
results and conclude.

2. Governing equations and numerical method
We work in cylindrical polar coordinates (x, r, θ) with corresponding velocity

components (u, v, w). Lengths are scaled on the vortex core radius and velocities are
scaled on the vortex swirl. The mean flow is the Batchelor vortex (Batchelor 1964),
given by

U (r) = q−1e−r2

, V (r) = 0, W (r) = (1 − e−r2

)/r. (2.1)
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Note that Fabre & Jacquin (2004) (and others) choose to scale velocities on the vortex
axial velocity. Our scales for velocity, and hence also the time coordinate, differ from
theirs by a factor of q . We use a ‘vortex Reynolds number’ Re defined by the mean
flow circulation (at infinity) divided by viscosity. Small perturbations u, p to the mean
velocity and pressure are introduced with constant axial and azimuthal wavenumbers
k and m, respectively, so that

u = u(r, t) exp(ikx + imθ), p = p(r, t) exp(ikx + imθ). (2.2)

The dynamics are governed by the linearized Navier-Stokes equations
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0 = iku +
(rv)′

r
+

imw

r
, (2.6)

where we have defined P =Wm/r +Uk. Boundary conditions for (2.3)–(2.6) are decay
at infinity and the appropriate kinematic conditions at r = 0 (see Khorrami, Malik &
Ash 1989).

The kinetic energy of the disturbance is

E(t) =
1

2

∫ ∞

0

(|u|2 + |v|2 + |w|2) rdr, (2.7)

which is the norm we use to measure the strength of the disturbance. Using the
standard terminology we refer to E(t)/E(0) as the energy amplification of an
initial condition at time t . Choosing a fixed time t = τ , the gain G(τ ) is defined
as the maximum energy amplification at time τ , the maximum being taken over all
permissible initial conditions. The disturbance which attains the maximum energy gain
is referred to as the optimal disturbance for that τ , e.g. ‘the τ = 50 optimal disturbance’.
For stable flows Gmax ≡ maxτ G(τ ) can be defined, and is usually the principal
measure of optimal growth levels. Here, however, our interest is in an unstable region
of parameter space where Gmax is undefined, so we deal directly with the gain G(τ )
itself. In order to compute the gain we first discretize the spatial radial coordinate
using a pseudospectral collocation technique, mapping the interval 0 � r � ∞ onto
−1 � ξ � 1 by the transformation ξ = (r − 1)/(r +1). Using this discretization, with N

collocation points, equations (2.3)–(2.6) transform into a (4N × 4N) matrix equation.
The gain is then calculated using the method described fully in Schmid & Henningson
(2001, chap. 4). This involves finding the frequency eigenvalues and eigenvectors of
(2.3)–(2.6), by solving the eigenvalue problem in the discretized matrix form of the
equations. After this the matrix equation is diagonalized and the optimal gain can
be computed as a norm of the matrix exponential, where the appropriate norm is
dictated by (2.7); see Schmid & Henningson (2001, chap. 4) for full details. We use
Matlab

TM to perform the linear algebra on a standard desktop computer. The rate-
limiting step in the procedure is the eigenvalue–eigenvector calculation, which has
O(N3) complexity. Our code is validated in two ways, first the eigenvalue spectrum
has been compared to the results of Fabre & Jacquin (2004) to check the spatial
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discretization, and secondly, the gain G(τ ) has been checked against the results of
Heaton & Peake (2007) (who used a different method to calculate the gain).

3. Gain curve results
3.1. Topography of the instabilities

Our interest is in the Batchelor vortex when the swirl strength q � 2 and the Reynolds
number Re is large. As mentioned in § 1, there are no strong instabilities in this regime
of the mean flow, but there are two relatively weak growth processes available. One
process is weak exponential growth by the viscous modes of Fabre & Jacquin (2004).
These modes exist at sufficiently large Re for wavenumbers satisfying

0 < k < −m/q, m < 0, (3.1)

(see Fabre & Jacquin 2004; Le Dizès & Fabre 2007).
The second growth process available is algebraic transient growth, which uses the

inviscid CS, as explored by Heaton & Peake (2007). The mechanism for the underlying
algebraic instability is vortex stretching of disturbances by the sheared mean flow
(Heaton & Peake 2006). The mechanism for the optimal transient behaviour is
analogous to that in two-dimensional shear flow, in particular to the oblique modes
in two-dimensional shear flow (Heaton & Peake 2007, § 4) because all modes are
necessarily oblique in a swirling jet. As a result, the transients differ slightly from the
streamwise modes and ‘lift-up effect’ familiar in two-dimensional shear flow (Landahl
1980), and from the axisymmetric modes and ‘anti-lift-up effect’ recently discovered
in vortices without a jet component (Antkowiak & Brancher 2007). The inviscid
transients have G(τ ) ∼ τ 2+2σmax for 1 � τ � tvisc and subsequently are damped for
τ � tvisc , where tvisc = Re1/3 is the relevant time scale of viscous damping. Transient
growth is possible via this process for all k, m, but for wavenumbers not satisfying (3.1)
it is found that σmax = 0 (Heaton & Peake 2007) and the effect is weak. Wavenumbers
k, m which do satisfy (3.1) have σmax = ∞. This means formally that gain G(τ ) faster
than any power of τ occurs via inviscid processes for 1 � τ � tvisc before being
asymptotically damped, implying stronger transient growth.

The two competing growth mechanisms therefore coexist in the same region of
parameter space, which for each m < 0 is given by (3.1) as a portion of the (q, k)-
plane. The balance between the two mechanisms is intricate, and depends on the
parameters at hand. In the limit of Re → ∞, the CS driven transient growth must
dominate for all τ and all k, m. This is because the growth rate of the primary viscous
modes decays as Re−1/3, while the CS transient growth approaches its inviscid limit.
Similarly, for Re less than the critical value for unstable viscous modes (the critical
value of Re depends on q, k and m, but is typically of order 104, see Fabre & Jacquin
2004), the CS transient growth must dominate. This latter regime, in which the viscous
modes are damped, was used for the demonstration of CS transient growth given by
Heaton & Peake (2007). Between the two regimes described is a wide range of large,
but finite, Re for which the balance of the two growth processes is not clear: this
is the range we consider here. This range of Re is not unrealistically high, Fabre &
Jacquin (2004) estimate Re � 105 for a large aeroplane, so this delicate mathematical
balance will indeed be present at physically relevant parameters.

3.2. Calculated gain for m = − 1

Our interest in values of Re above the critical value for viscous modes means that
the flow is asymptotically unstable. The long-time exponential growth of the viscous
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Figure 1. Gain curve at q = 2, m= − 1, k = 0.268 and Re = 1.74 × 105. The solid line shows
G(τ ). The dashed line shows Ginv(τ ), i.e. the gain curve when Re = ∞ but q,m, k are unchanged.
The dash-dot lines indicate the growth rate of the primary viscous mode. The dotted lines
show the energy amplification curves for the τ =50 and τ = 500 optimals.

modes, albeit relatively weak, means that Gmax (≡ maxτ G(τ )), which is usually the
principal quantity for measuring growth levels, is undefined. Instead, as intimated in
§ 2, we will have to inspect the entire gain curve G(τ ) in this investigation. Another
factor which complicates the interpretation of numerical results is that, as explained
in § 3.1, the two effects inhabit exactly the same range of wavenumbers (3.1). In
two-dimensional channel and boundary-layer flows, the corresponding effects are
well-separated in wavenumber space: If α, β denote the streamwise and spanwise
wavenumbers, then the weak exponential instabilities (the Poiseuille flow instability
mode or Tollmien–Schlichting waves) are strongest at β = 0 (by Squire’s theorem,
see Drazin & Reid 1981). On the other hand, the strongest CS derived transient
growth occurs at α = 0, where viscous damping of the inviscid CS is weakest (because
tvisc = Re for α = 0 and tvisc = Re1/3 for α 	= 0, see Chapman 2002; Heaton & Peake
2007). This separation in wavenumber space leads to two distinct local maxima of
the gain in the (α, β)-plane and consequently a clear-cut transition between the two
effects: at early times, the α = 0 CS transient growth is strongest, but at a certain
time the local maximum with β = 0 overtakes it, and for all subsequent times the
instability mode provides the strongest growth. Figure 7 of Corbett & Bottaro (2000)
gives a clear illustration of this. Here the two effects are simultaneously present in
the Batchelor vortex for the same wavenumbers (3.1), which will cause the transition
between the two regimes to be of a more gradual nature.

Gain curves have been calculated as outlined in § 2, and an example of the shape of
the gain curve we find is shown in figure 1. In figure 1, we assume q = 2 to determine
the mean flow. At larger q , the viscous modes are both weaker and reliant on higher
values of Re (Fabre & Jacquin 2004, figure 4). The CS transient growth is anticipated
to have approximately the same strength for larger q (Heaton & Peake 2007, figure 8b),
therefore we choose q = 2 in the first instance to give a fair comparison of the two
effects. Taking q = 2 and m = − 1, the values of k = 0.268 and Re = 1.74 × 105 were
both chosen to maximize the growth rate of the primary viscous mode, which we
find to be Im(ω) = 9.87 × 10−3. These values are in agreement with the viscous mode
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Figure 2. Optimal disturbances for the parameters in figure 1. Solid and dashed lines show
the real and imaginary part of u for the τ = 50 optimal (a, b) and the τ = 500 optimal (c, d).
(a, c) show the initial disturbance u(t = 0), while (b, d) show the final disturbance u(t = τ ). The
symbols are for comparison, and are explained in the text.

calculations of Fabre & Jacquin (2004), in particular see their figures 4(a) and 5.
For the comparison, note that our definition of the Reynolds number differs from
theirs by a factor of 2πq , and that our time scale differs from theirs by a factor of q .
All disturbances must asymptotically grow with this exponential growth rate at long
times, for example see the τ = 50 and τ = 500 optimals in figure 1. In what follows,
we discuss the behaviour seen at finite times.

Figure 1 shows that for 0 � τ � 100, the gain curve initially follows the growth
possible for an inviscid vortex with the same corresponding parameters (shown by the
dashed line). This suggests that the early growth is being attained via the transient CS
mechanism, and that viscosity therefore is having a stabilizing effect on the optimal
perturbation. At later times such as τ � 400, the gain curve is approximately linear in
figure 1, corresponding to exponential growth of G(τ ). The gradient of the dash-dot
straight lines indicates the rate of growth of the primary viscous mode, and it is seen
that G(τ ) approaches this gradient for larger τ . This suggests that for larger τ the
optimal growth is attained via the viscous mode, a portion of the spectrum on which
viscosity has a destabilizing action. While the shape of the gain curve in figure 1 is
highly suggestive, in order to confirm these suspected mechanisms we examine the
nature of the optimal disturbances in more detail in figure 2.

Figure 2 shows the axial component u of the optimal disturbances for τ = 50
(figure 2a, b) and τ = 500 (figure 2c, d). Figures 2(a) and 2(c) show the optimal
initial conditions at t =0 and figures 2(b) and 2(d) show the optimal disturbance
(which evolves according to (2.3)–(2.6)) at time t = τ . We display only u for simplicity,
similar behaviour is observed for the other components v, w, p of the disturbances.
Note also that in figures 2(b) and 2(d), u is rescaled to have unit norm to allow
comparison, but in reality the disturbances grow in magnitude such that G(50) = 391
and G(500) = 2.78 × 107. The τ = 50 optimal is suggested to use the CS transient
mechanism discussed by Heaton & Peake (2007). Optimal disturbances using the CS
mechanism contrive to arrange efficient cancellations of the various CS eigenfunctions
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in the initial (t = 0) data, see Appendix B of Heaton & Peake (2007) for full
details, leading to initial data which are characteristically very oscillatory. As CS
optimals evolve towards t = τ , the cancellations present in the initial data evaporate,
because of differences in the complex phase for the different frequencies of the CS.
The optimal disturbance best exploits this mechanism, and therefore has very little
cancellation present when t = τ and is characteristically not oscillatory. This behaviour
is recognized in the τ = 50 optimal by the oscillatory initial data (figure 2a) and the
markedly simpler structure of the data at t = τ = 50 (figure 2b). Final confirmation of
the mechanism is given by comparing the optimal disturbance with the symbols
in figures 2(a) and 2(b), which represent the optimal disturbance for the same
parameters in a purely inviscid vortex. After the optimal time, since there are no
more cancellations in the disturbance field, the inviscid mechanism is spent; the
disturbance, in general, possesses a component of the viscous mode, and this must
provide the subsequent growth. The energy amplification curve E(t)/E(0) for the
τ = 50 optimal is shown by a dotted line in figure 1: correspondingly, it shows
initially rapid growth but after t = 50 subsequently settles down to the slower growth
rate of the viscous mode.

Figures 2(c) and 2(d) show the τ = 500 optimal disturbance, which it is suggested
relies on the primary viscous mode to attain its energy growth. It is immediately
clear from the nature of the initial data (note the different scales on the axes) that
the τ = 500 optimal has a very different structure to the τ = 50 optimal. The optimal
growth for a non-normal operator possessing a primary unstable eigenmode φ1, in
the absence of alternative mechanisms, is attained by the primary adjoint eigenmode
ψ1 (see Corbett & Bottaro 2000; Chomaz 2005). If the τ = 500 optimal is dictated by
the primary viscous mode, we would expect the initial condition to resemble ψ1 (the
adjoint eigenmode) and the disturbance later to resemble φ1 (the proper eigenmode).
In figures 2(c) and 2(d), the adjoint and proper eigenmodes, respectively, are plotted
for comparison using the symbols. The excellent agreement of the symbols with
the computed lines confirms that the τ = 500 optimal indeed has straightforward
optimal growth of the primary viscous instability mode. The energy amplification
curve E(t)/E(0) is shown by a dotted line in figure 1. All optimals in the large-τ
regime share the same initial condition (ψ1), and so they also closely follow the same
energy amplification curve.

The trend observed in figure 1, and confirmed using figure 2, is of optimal growth at
smaller τ dominated by CS transients, followed by a regime at larger τ dominated by
the primary viscous mode. This is the same trend seen in a two-dimensional boundary
layer (Corbett & Bottaro 2000) and the explanation is similar. The CS transient
growth is typically algebraic in nature (see § 4 of Heaton & Peake 2007). For smaller
τ , algebraic growth exceeds a weak exponential instability exp(στ ) with small growth
rate (recall σ is of order 10−2 for a viscous mode, or 10−3 for a Tollmien–Schlichting
wave). For larger τ , the exponential must eventually surpass the algebraic growth,
causing the transition to a second regime at larger τ . Between the two distinct regimes
examined at τ = 50 and 500 in figure 2, we observe a smooth transition of the gain
curve in figure 1. The balance between the two mechanisms in the transition region
is visible in the form of the optimal disturbances for intermediate τ . As τ increases,
we find that the initial condition in figure 2(a) gradually migrates towards smaller r

and the size of the oscillations at the larger r gradually decreases. At τ = 200, the
initial optimal is similar in shape to ψ1, the adjoint eigenmode in figure 2(c), however
it still extends to larger r than ψ1 and still contains some small oscillations beyond
those present in ψ1. This indicates that at τ = 200, in the transition region, both
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Figure 3. Gain curves at q =2 for (a) (m, k,Re) = (−2, 0.552, 3.02 × 105) and
(b) (m, k,Re) = (−3, 0.845, 6.76 × 105). Curves have the same meaning as in figure 1.

mechanisms are still contributing. This smoothness of the transition is not necessarily
expected in a quantity defined by an optimization, and certainly contrasts sharply
with the corresponding picture in a Blasius boundary layer (figure 7 of Corbett &
Bottaro 2000). For τ > 200, the gain G(τ ) and the energy amplification of the large-τ
optimals are almost equal, indicating that the transition region ends at about this
point.

3.3. Gain levels for m � −2

A detailed discussion has been given of the m = − 1 case, and similar behaviour was
also observed for m = −2, −3. For these values, the gain curves are shown in figure 3,
where again we have taken q = 2 and choose k and Re in order to maximize the
growth rate of the primary viscous mode. Figure 3 shows the same trends as figure 1,
and we find that the same type of transition occurs between a regime dominated by
inviscid CS transients and a regime dominated by the primary viscous mode.

One difference to note is that the gain levels are somewhat higher in figure 3 than
figure 1, this is partly due to the higher values of Re in the plots as well as the
variation of m. Figure 4 shows a comparison of optimal growth levels across various
wavenumbers for fixed q and Re, the values taken being those used in figure 1.
Figure 4 shows the comparison for τ = 50, 200 and 500, corresponding to the inviscid,
transition and viscous regimes of figure 1, respectively. In each regime, the gain is
found to be greatest for finite |m|: the inviscid gain Ginv(τ ) (the dashed lines in figures 1
and 3) increases with |m|; however, at larger |m|, inviscid mechanisms are more
strongly damped by viscosity (e.g. see Denier & Stott 2005). This balance causes
the inviscid transients to reach a maximum at m = − 3 in figure 4(a). In the viscous
regime, it is the growth rate of the primary mode which counts, and this too is
maximum at finite |m|. In this case, m = − 2 has the greatest growth rate (see figure 4a
of Fabre & Jacquin 2004, and recall that we use the Re maximizing the m = − 1 growth
rate), and correspondingly m = − 2 has the greatest gain in figure 4(c) when τ = 500.
For m � −5, all viscous modes are stable in this case, implying much smaller growth
at large τ (figure 4c). Note that for these modes, the gain increases weakly with k,
which is unexpected at first because increasing k is usually associated with increased
viscous damping. Viscous modes, however, are destabilized by viscosity and in fact
this trend reflects a weak increase in Im(ω) for the least-damped viscous mode as
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Figure 4. Gain G(τ ) for Re = 1.74 × 105, q = 2 at (a) τ = 50, (b) τ =200, (c) τ = 500. In each
case the seven curves from left to right correspond to m= − 1, −2, . . . , −7 (so that the m= − 1
curve is the narrowest and covers the smallest range of k, the m= − 7 curve is the widest).

k increases. This is observed numerically in our calculations, and is explained by
equation (5.5) of Le Dizès & Fabre (2007).

4. The inviscid gain curve as τ → ∞
An interesting question surrounds the precise nature of the inviscid (dashed) lines

in figures 1 and 3. When there is no exponentially growing unstable eigenvalue in the
inviscid equations, we expect inviscid gain Ginv(τ ) ∼ τ 2+2σmax as τ → ∞, where σmax

is the maximum exponent of the algebraic CS instability. Heaton & Peake (2007)
verified this scaling in cases with finite σmax , but for the Batchelor vortex the precise
scaling is unclear because σmax = ∞ and Ginv(τ ) increases faster than any power of
τ . Investigation of Ginv(τ ) using our present numerical method appears to indicate a
scaling of the type Ginv(τ ) ∼ exp(τ 1/2) in the τ → ∞ asymptotic limit. Our numerical
computations reach their limit at τ � 500 owing to round-off errors and larger values
of τ are required in order to fully confirm the scaling, but an exp(τ 1/2) shape is
consistently found and is sufficiently unusual to merit a mention. We note that a
precedence does exist for linear operators to have exponential gain, even though
they do not possess an unstable eigenvalue (see Trefethen 1997, which discusses two
such operators due to Zabczyk and Hille & Phillips). Such behaviour has not been
encountered in a fluid dynamics context, so it would be interesting to confirm any
such structure in the linearized Navier–Stokes equations.

The results of § 3 clearly indicate that for large τ the optimal gain is controlled
by the primary viscous mode and the inviscid theory is not relevant. Nevertheless,
we highlight the unusual scaling Ginv(τ ) ∼ exp(τ 1/2) as τ → ∞ which our limited
numerical evidence suggests, as there may be other circumstances in which it is
relevant.

5. Conclusions
The present results attempt to establish the significance of Fabre & Jacquin’s viscous

modes in the context of the initial-value problem for instability of a trailing vortex.
We have used optimal growth in an attempt to measure impartially the strength
of the viscous instabilities and their competition with inviscid natured transients.
Attention has been restricted to mean flows with q � 2 in which these two are the
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only known growth mechanisms, both of which can be described as relatively weak.
The competition between inviscid transients and viscous modes described in this
paper is expected to be mirrored in all other non-trivial vortices (as both growth
mechanisms are generic). While the Batchelor vortex may be criticized as a model
of reality (Spalart 1998), it is a useful prototype, not least because there is a large
literature detailing the parameters for which each linear instability applies.

We find a transition between two distinct regimes. Over short time intervals,
the strongest growth is solely due to inviscid CS transients, whereas over longer
intervals the optimal growth is solely due to the primary viscous mode. A helpful
analogy exists with the linear growth of disturbances to a Blasius boundary layer,
where the weak instability modes are Tollmien–Schlichting waves and the inviscid
CS transients are streamwise independent structures. In a Blasius boundary layer, the
optimal disturbances for the two mechanisms have very different wavelengths, and the
transition between the two regimes is sharp (for times shorter than a critical value, all
optimals are exclusively streamwise-independent transients, whereas for times longer
than the critical value, the optimal is just the Tollmien–Schlichting wave, see Corbett &
Bottaro 2000). Here, in contrast, the two mechanisms use the same wavelengths and
have more similar optimal disturbances. A smooth transition is found in which,
over intermediate time intervals, the optimal disturbance uses both mechanisms to
contribute to its energy growth. The balance between inviscid transients and viscous
modes is therefore more evenly balanced than in a boundary layer. The reasons for
this are the wavelengths of the optimal disturbances, the viscous mode growth rates
(which are a little larger than Tollmien–Schlichting growth rates) and the viscous
damping time scale for the inviscid transients (tvisc = Re1/3 here, whereas tvisc = Re in
a boundary layer, Heaton & Peake 2007). These factors appear able to compensate
for the extra strength of the inviscid transients themselves (σmax = ∞ in the Batchelor
vortex whereas σmax = 0 in boundary layers and two-dimensional shear flows), at least
in the cases considered here. It should be recalled that the values of q, Re used in
figures 1 and 3 were chosen to maximize the strength of the primary viscous mode,
so there are also many values for which the viscous modes are less significant.

We have found the optimal linear gain G(τ ) to be a useful measure of instability
for the comparisons made in this paper, but it does have limitations, in particular
to realize the gain requires a very specialized disturbance. It is widely believed that
strong gain is an indication of strong growth from stochastic processes (Schmid 2007),
which is perhaps a more realistic scenario in practice. Indeed, optimal growth has
strong links to instability from random forcing (Farrell & Ioannou 1993), and also to
random uncertainties in the mean-flow operator itself (Trefethen 1997), each of which
may be effects of free-stream turbulence in reality.

Further, optimal linear growth does not measure the nonlinear importance of a
linear growth mechanism. Determining which disturbances (in particular which values
of m) best seed nonlinear instability of the vortex requires a different analysis, although
we may reasonably expect the linear results to offer some indication. Also, the time
at which nonlinear effects become significant cannot be concluded from our linear
analysis. When the viscous regime becomes dominant, the gain is already very high,
so it is not clear that linear theory can access the large-τ regime. If it cannot, because
the growth possible in the inviscid regime is sufficient to invoke nonlinearity, then
this would imply a bypass route to instability. For the trailing line vortex application,
a first indication may be obtained by attempting to translate our temporal results
into spatial results. Following the scaling arguments of Fabre & Jacquin (2004), in
turn based on the experimental results of Jacquin et al. (2001), we obtain an order of
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magnitude estimate that τ = 500 corresponds to roughly 25 wing spans downstream of
an aircraft. This value is comparable to the characteristic scale of the Crow instability,
which would suggest an aircraft vortex is unlikely to experience much of the large-τ
regime before other effects, neglected here, become important. The transition region
between the regimes, at about τ = 200 or 10 wing spans downstream, might however
be accessible.

The author thanks Trinity College, Cambridge, for its financial support.
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